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Abstract 

Today, the accuracy of position determination ashore or at sea is no longer a 
technical problem, but mainly a problem of clear mathematical formulation. This 
paper deals with the determination of accuracy. The results of the study by Burt et al 
(1965), developed further by the author over the years, are taken as a basis for the 
discussion. This paper describes a complete algorithm which is made available in the 
World Wide Web. The algorithm is used to evaluate GPS measurements with and 
without Selective Availability and to show differences in accuracy. 
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1 Introduction 

Satellite navigation is widely used for civil applications. It can be said that shipping is 
the user community with the longest experience and still, if recreational vessels are 
included, provides the largest number of users today. Land transport, with navigation 
systems installed in automobiles and possibly trains, is rapidly catching up and will be 
by far the largest group of users in future years. Air traffic falls in between, with a 
heavily regulated use of equipment which has tended to slow down the application of 
this navigational aid. Surveying has many years of experience in satellite navigation.  

In the following, the term 'satellite navigation' means the Global Positioning System 
'GPS'. GPS receivers are by far the most commonly used equipment. An earlier form 
of satellite navigation system, known as TRANSIT, was previously used with success 
by both the shipping and surveying communities. The theoretical considerations 
made in this paper can also be applied to other systems, such as the Russian 
'GLONASS' or the future European 'GALILEO' system, as well as to all other two-
dimensional position-finding procedures.  

The specific starting point of this investigation is the stationary use of satellite 
navigation. The actual questions are:  

• what  magnitude of error is to be expected? 

• for how long have position measurements to be averaged in order to obtain an 
error level which is smaller than a specified threshold? 

The concrete case dealt with the determination of the location of a mobile VTS 
system (Vessel Traffic Services system). Supported by radar, this system detects 
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and locates shipping traffic which is then displayed on an electronic chart display and 
information system (ECDIS). After positioning the measuring vehicle, the 
geographical location of the radar antenna must first be determined since the 
positions of the traffic entities are calculated relative to this radar antenna. Then, 
radar station and shipping traffic can be displayed on the electronic chart display. 
Although this might seem to be a very special application, such methods are 
frequently used. Similar questions occur, for example, in surveying, civil construction 
and mining while positioning equipment. 

When dealing with navigation accuracy, the form in which position errors are to be 
presented should first be defined. In this case, methods of error statistics as used for 
one-dimensional scalar quantities fail due to multi-dimensionality of the measured 
quantity. In practice, there exist numerous error measures which differ considerably 
as far as their significance is concerned (Bowditch1977, Harre 1980, Harre 1990). In 
the following, a calculation procedure from two-dimensional statistics, providing clear 
and easily understandable results, is proposed. These results, as well as the more 
common error quantities dRMS/2dRMS, are calculated and illustrate in the form of 
error contours (error ellipse/error circle) the random position error. Another 
calculation procedure is proposed to show the time-dependent convergence of the 
systematic position error due to averaging. The algorithms are implemented in 
MATHCAD. The relevant files can be loaded from the www (Harre 2001). They can 
be used directly for similar evaluations if the MATHCAD program is available. 

Two data sets collected with a 12-channel GPS receiver while Selective Availability 
(SA) was active and after its discontinuation, were used to test the algorithms. The 
results also provide an indication on position accuracy improvement without SA. 

2 Calculation of the random position error 

2.1 Display of position measurements as 'Scatter plot' 

In the case of a stationary installation of a satellite receiver and display of the 
measured positions in the coordinate system of a chart, one normally gets a 
scattering of the measured positions about a point resulting from the average values 
of the north and east coordinates of the individual measurements. This point is the 
'Probable Position' - PP. 

( )λϕ ,:=PPP  (1) 

If the true location of the satellite receiver antenna is known (öw , ëw), the individual 
error for the i-th position measurement is: 

( )wiwiw i
P λλϕϕ −−=∆ ,:  (2) 

Since the true position of the antenna location for the application considered in this 
paper is not known - the procedure is actually applied to determine an estimated 
value for the true position, the individual errors are calculated relative to PP: 

( ),: PPiPPiPPi
P λλϕϕ −−=∆  (3) 
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This means that the entire data set must be available prior to evaluation. 

The algorithm is set up so that the systematic and the random error are determined in 
the case of a known true position whereas only the random error relative to the 
averaged position is determined in the case of an unknown true position. 

Subsequent to their conversion from degrees into meters (ö � y; ë � x ) with due 
consideration of the meridian convergence, the individual errors are displayed in a 
cartesian coordinate system  (Fig.  1, Fig.  2). Such a display ('Scatter plot') is 
informative since it does not only provide a first general idea on the scattering of the 
measured values, but can also show systematic error behavior, e.g. 'Random Walk' 
or position jumps caused by reflection. 

2.2 Error circles dRMS and 2dRMS 

The random errors of position measurements are then used to calculate, in the 
known manner, the standard deviations (ó) of the x- and y-coordinates. The first error 
quantity dRMS, which is easy to calculate, results from the standard deviations. This 
measure refers to an error radius which is calculated as follows: 

22: yxdRMS σσ +=  (4) 

Contrary to one-dimensional statistics, there is no fixed probability level for this error 
measure. The probability level (p) depends on the ratio of standard deviations (cf. 
Table).  

 

óy/óx 1dRMS p(1dRMS) 2dRMS p(2dRMS) 

0.0 1.0 0.6827 2.0 0.9545 

0.25 1.0308 0.6815 2.0616 0.9591 

0.5 1.1180 0.6629 2.2361 0.9697 

0.75 1.25 0.6392 2.5 0.9787 

1.0 1.4142 0.6320 2.8284 0.9816 

 

Owing to the low probability content of the dRMS error circle – today, 95% are 
generally required for position-finding errors (IMO 1995) - the following quantity is 
often used: 

2 22*2: yxdRMS σσ +=  (5) 
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2.3 Two-dimensional error probability 

The probability that a position fix is within a specific error contour results from the 
numerical integration of the two-dimensional error distribution (Eq. 6) across the 
selected error contour, e.g. across a circle or an ellipse. 
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The error probabilities of the radial errors dRMS and 2dRMS shown in the table 
above, i.e. the probability that a position fix lies within a circle with the radius of 
dRMS or 2dRMS, are available in the referenced literature. They have been 
recalculated by the author. The algorithm to solve the elliptical integral (Eq. 6) is 
available in the Web (Harre 2001) and can be used for other error contours, e.g. error 
ellipses, as well. 

2.4 Error ellipses as accuracy contours 

Normally, the x and y standard deviations have a different magnitude. The resulting 
'natural' error contour is an ellipse with the standard deviations as semi-axes. 
Solutions of the probability integral for specific multiples (k) of the standard deviations 
are shown in the following table. 

Multiplication of óx and óy with k results in the semi-axes a and 
b of the ellipse for the selected integration contour (Eq. 6). 
The probability content of the integration ellipse does not 
depend on its eccentricity. If the position-finding error is to be 
displayed in the form of an error ellipse with a probability 
content of 95%, the standard deviations must be multiplied by 
a factor 2.449. 

At this point it should be noted that the standard deviations 
must be determined in orthogonal axes, i.e. from uncorrelated 
errors of the position coordinates. Thus, in the case of 

LORAN-C measurements for example, it is not sufficient to use distances from two 
non-rectangular base lines as position errors. Two-dimensional measurements are 
correlated if the measuring error in one axis also affects the error in the other. The 
procedure of measured value decorrelation is included in the algorithm made 
available. The result of such a decorrelation is a rotation of the error ellipse. 

2.5 Circular Error Probability 

Since the error circles dRMS and 2dRMS comprise error probabilities varying with 
the ratio of the coordinate error standard deviations, a procedure was developed 
which can be used to calculate error circles providing a fixed probability content 
(Harter 1960; Burt, et al. 1965) The error circles of the so-called 'Circular Error 
Probability (CEP)' comply with this criterion. The procedure is based on tabulated 
values that are calculated for specified probabilities and graduated ratios of the error 
standard deviations by evaluating the probability integral. The smaller of the two 
standard deviations is to be multiplied by a value taken from the table. The result of 
the calculation is the error circle radius with the desired probability content. Since the 

k p 

1 0.3934 

2 0.8646 

2.449 0.95 

3 0.9889 
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use of tables is not optimal for automated calculation, the author has determined 
approximation polynomials for the tabulated values (Harre 1987). Today, mainly the 
error circle CEP95 containing 95% of the position fixes of a set of measurements is of 
importance for navigation purposes, the calculation of which is included in the 
proposed algorithm. 

3 Convergence of the systematic position error by position averaging 

In this calculation, the values of the position coordinates are initially averaged over 
the entire data set. The resulting mean values form the coordinates of the Probable 
Position (PP). Then, the coordinates are averaged with increasing data set number. 
These 'advancing' mean values and the coordinates of the Probable Position are 
used to determine the magnitude of a 'progressive' error vector, the 'systematic' 
position error, which is displayed vs. elapsed time (Fig.  3, Fig.  4). The respective 
diagrams show the position deviation from PP as a function of averaging time. With 
this algorithm the following should be taken into account: 

- the overall data set should be large enough so that PP sufficiently 
approximates the true position to serve as a reference. A reasonable data set 
would comprise data collected over at least 24 hours, a duration in which the 
earth has performed a full rotation underneath the satellite constellation,  

- second, if PP is used as a reference (for the true position), then the residual 
error converges against zero, a result which is inherent in the process, but 
might not entirely reflect reality. An accurately surveyed 'true' position would 
be the ideal reference to replace PP - if it were available, 

- short-term position averaging results taken over an equal time interval vary 
considerably due to changing Horizontal Dilution of Precision (HDOP) over 
time.  

Nevertheless, the calculation permits an initial assessment of the effect of position 
averaging and the needed duration to reach a predetermined error level. The error 
convergence diagrams show that: 

- there is little practical benefit for averaging times shorter than � 2,000 seconds 
(Fig.  3, Fig.  4), the same applies for averaging times longer � 20,000 
seconds (Fig.  5, Fig.  6). 

- the averaging effect follows the expected n/1 rule, i.e. if the number of 
averaged positions (n) is increased, for example, by the factor of 4, the error 
will be reduced to ½ (Fig.  5, Fig.  6). 

4 GPS measurements with and without Selective Availability 

The measurements displayed hereafter in the form of graphs were made in Bremen 
in August 1997 (Fig. 1, 3, 5) and in February 2001 (Fig. 2, 4, 6) using a reference 
station by Trimble of the 'Pathfinder Community Base Station' (PFCBS) type which 
was operated as a normal 12-channel GPS receiver. At the beginning of the 
measurements, the relevant antenna locations were not known. The distance 
between the two locations is approximately 8 m. Apart from a small sector in the east 
(shadowing by a tree), the sites permitted a clear view up to low satellite elevations. 
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In both cases, measurements were evaluated covering a measuring period of 
approximately 24 hours. The scatter plots with the error contours (Fig.  1, Fig.  2) 
show the considerable differences in the measuring accuracy of GPS with and 
without Selective Availability. 

4.1 Error levels 

 
Error quantity with SA without SA 
óx . óy (correlated) 15.68 m . 23.01 m 2.44 m, 2.35 m 
dRMS 27.85 m (64%) 3.39 m (63%) 
2dRMS 55.69 m (98%) 6.78 m (98%) 
CEP95 49.13 m 6.01 m 
óx . óy (decorrelated) 15.64 m . 23.04 m 2.84 m , 1.85 m 
Azimuth Ell. axis b  3.92° 317.50° 

 
After the discontinuation of SA the random position error, as expressed by CEP95, 
has dropped to 1/8 or 12.5 % of  the previous value.  
Measurements performed shortly after the discontinuation of SA show a 95%/24h 
position error twice as large as the one determined here (JONAS 2000). The author 
of the referenced paper, however, has confirmed that he even received slightly better 
results than those mentioned here in measurements performed in March 2001, just 
before this paper was finalized. 

4.2 Scatter plots and error contours 

 
Fig.  1:  GPS with SA; 

CEP and error ellipse for p=0.95 

 

 
Fig.  2:  GPS without SA;  

CEP and error ellipse for p=0.95 
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4.3 Error convergence plots 

 
Fig.  3: GPS with SA -  

the effect of position averaging, 
logarithmic scales 

 

 
Fig.  4: GPS without SA -  

the effect of position averaging, 
logarithmic scales 

 

 
Fig.  5: GPS with SA -  

the effect of position averaging, 
linear scales 

 

 
Fig.  6: GPS without SA -  

the effect of position averaging, 
linear scales 

 

The comparison of the approximation curves in Fig.  5 and Fig.  6 show that within 
the data sets examined the 'systematical' position error has dropped to approx ¼ or 
25% after discontinuation of SA The graphs also show that any given accuracy level 
is reached much faster than before. While, in the case of SA, a position offset of e.g. 
1 meter between the averaged and the reference position is permanently reached 
only after �60,000 seconds, this result is now available after 12,400 seconds. It is 
remarkable that averaging has to be continued for approximately 2,000 – 3,000 
seconds before improvements with regard to the systematical error become effective 
(Fig.  3, Fig.  4). 

5  Conclusion 

Similar to all measurements, position values show statistical behaviour, i.e. two 
measurements made one after the other normally differ. The position-finding error on 
the earth's surface can be described by means of two-dimensional statistics. Today, 
technical literature still includes the error circle measures dRMS and 2dRMS which 
are easy to calculate but not precise error measures since they do not contain fixed 
error probabilities. 
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During the past two decades, much has changed with regard to position finding and 
navigation. Satellite navigation is unrivaled for its world-wide availability and 
accuracy. It seems that an increased accuracy also results in higher demand for 
dependability of position finding. When an average accuracy of perhaps 2 nautical 
miles has been achieved with the sextant, an error probability of may be 50 % was 
accepted. Since the introduction of GPS with initial accuracy of better than one 
hundred meters, a probability of 95 % is demanded for errors specified and obtained 
in practice. These increasing demands should also be taken into consideration for 
the applied error measure. Today, an indication without fixed probability is no longer 
adequate, but is found  frequently in the literature. The error quantities to be criticized 
in this respect were noted as 'confusing'  quite some time ago (Bowditch  1977). A 
general convention on error levels and measures would be sensible. 

Very often, electronic chart display and information systems such as ECDIS are used 
in modern position-finding, navigation and traffic monitoring systems. With today's 
technology, it should be no problem to visualize the user's position-finding accuracy, 
upon operator request, by a CEP95 error circle or – better still – by a 95% error 
ellipse. This can enhance safety in special situations during navigation and increase 
the efficiency in surveying applications. 

The GPS measurements evaluated by means of the developed algorithms show an 
improvement in the random position error by a factor 8 subsequent to discontinuation 
of Selective Availability. Also, the systematical position error converges much faster 
than before, if positions are averaged.  

The algorithms discussed in this paper are available via the author's web site, in the 
Internet, in the form of MATHCAD files, and the author hopes that this will trigger 
further work and publications on questions of navigational accuracy. 
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